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ABSTRACT

LocalizedAviationMOS Program (LAMP) convection and lightning probability and ‘‘potential’’ guidance

forecasts for the conterminous United States, developed by the Meteorological Development Laboratory

(MDL), have been produced operationally and made available to aviation and other users through the Na-

tional Digital Guidance Database (NDGD) since April 2014. In response to user requests for improved skill

and resolution of these forecasts, MDL has recently made extensive upgrades, and a switch to the new LAMP

guidance was made in January 2018. Upgrades include improved spatial and temporal resolution of the

predictands, which were enabled by first time LAMP use of finescale radar reflectivity products from the

Multi-Radar Multi-Sensor (MRMS) system, total lightning observations from a ground-based lightning

sensing system, and finescale model output from the High Resolution Rapid Refresh (HRRR) model. This

article describes how these new data inputs are applied in the LAMP model to obtain improved skill and

sharpness of the convection and total lightning probability forecasts. Strengths and limitations in LAMP

performance are shown through verification statistics and example verification maps for a selected intense

convective storm case.

1. Introduction

During 2012–17, flight delays and cancellations in the

United States cost airlines and passengers over $20 bil-

lion (U.S. dollars) annually (FAA 2018). About 65% of

the air travel disruptions were due to adverse weather,

which includes low ceilings, low visibility, air turbulence,

wind shear, and lightning. Statistics compiled by the

National Weather Service (NWS 2019) reveal lightning

strikes have caused a U.S. annual average of 29 human

deaths during 2008–18 and many more serious injuries

(see Curran et al. 2000 for casualty statistics during

1959–94). Lightning also results in heavy property dam-

age, as the Insurance Information Institute (Insurance

Information Institute 2019) reports that insurance pay-

outs from lightning losses to residential properties av-

eraged almost $900 million annually during 2007–16,

and additional losses are incurred by commercial prop-

erties. As improved thunderstorm forecasts could miti-

gate these public safety and economic impacts, this study

addresses a continuing need for skillful thunderstorm

forecast guidance for the user community.

The history of automated gridded thunderstorm guid-

ance forecasts dates back to the early 1970s, as the Tech-

niques Development Laboratory [nowMeteorological

Development Laboratory (MDL)] of the National

Weather Service (NWS) used a statistical model with a

linear regressions equations framework to estimate very

short-range (2–6 h) thunderstorm probabilities (Charba

1977) on an 80-km grid for the eastern United States.

About the same time, Reap and Foster (1979) used a

similar statistical model together with a model output

statistics approach (MOS; Glahn and Lowry 1972) to

extend the predictive range of such gridded probabili-

ties to 12–36 h. While both of these early studies used

Weather Surveillance Radar (WSR-57) reflectivity data

to define the thunderstorm predictand (Reap and Foster

1979, Fig. 2), predictors for the very short-range prob-

abilities consisted of a mix of observational parameters

derived from conventional weather observations and
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manually digitized WSR-57 radar data, large-scale

numerical/dynamical weather prediction (NWP) model

forecasts, and thunderstorm climatology, whereas the

longer-range MOS forecasts used only the latter two

predictor types. Over the course of four decades since

these early studies, many similar automated, gridded

thunderstorm probability guidance products involving a

variety of statistical methods have followed, most of

which feature large-scale NWP model predictors and

forecast ranges of 12 h and longer (Reap 1991; Hughes

1999; Bright et al. 2005; Burrows et al. 2005; Bright and

Grams 2009; Bothwell 2009; Bothwell andBuckley 2009;

Shafer and Gilbert 2008; Shafer and Rudack 2015).

Fewer statistically based thunderstorm guidance prod-

ucts that focus on the short range (i.e., ;24h and less)

have been developed and implemented (Charba and

Liang 2005a; Dupree et al. 2009; Charba and Samplatsky

2009, and Charba et al. 2011), as they involve increased

model complexity because of the need to incorporate

current observations-based predictors together with NWP

model-based predictors.

The Localized Aviation MOS Program (LAMP) was

conceived at MDL during the early 1980s (Glahn 1980;

Glahn and Unger 1986) to produce hourly updates of

MOS guidance forecasts in the 1–25-h range. Over the

years, principal users of LAMP guidance forecasts have

been local NWS Weather Forecast Offices (WFOs) to

support local public and aviation weather forecasts and

the NWS Aviation Weather Center to support its na-

tional aviation forecast guidance responsibility. Quite

recently, LAMP guidance products are also being con-

sidered as a short-range input to the NWS National

Blend of Models (Tew et al. 2016; Craven et al. 2018).

As LAMP guidance gained prominence during the

1990s, the short-range gridded thunderstorm probability

guidance mentioned above (Charba 1977) was incor-

porated into it, as thunderstorms are relevant to avia-

tion operations and planning, and LAMP supports a

combination of small-scale, observations-based, and

large-scale NWP-based predictors such as used in this

older thunderstormmodel. Additionally, LAMP applies

simple Lagrangian advection models to observations-

based predictor grids to extrapolate their predictive value

to longer forecast projections. Thus, LAMP functions

to fill the information gap between current weather

observations and large-scale MOS guidance forecasts

(Ghirardelli and Glahn 2010). Recently, this ‘‘base’’

LAMP model was upgraded to incorporate hourly

issued, finescale dynamical predictors from the High

Resolution Rapid Refresh model (HRRR; Benjamin

et al. 2016). Glahn et al. (2017) discuss how this ‘‘LAMP-

HRRR meld’’ results in improved LAMP cloud ceiling

and visibility forecast guidance.

At the time development work on the initial LAMP

thunderstorm product (Charba and Liang 2005a) com-

menced in the early 2000s, cloud-to-ground (CG) light-

ning flash data (see section 2b for the definition of

lightning flashes) from theNational LightningDetection

Network (NLDN; Cummins et al. 1998) were already

being used at MDL for MOS ‘‘thunderstorm’’ proba-

bility prediction (Hughes 1999, 2004). Thus, this early

LAMP thunderstorm guidance also switched from use

of radar reflectivity to CG flash data for the predictand

definition. The product consisted of 1–25-h probabili-

ties of one or more CG flashes in 20-km square grid

boxes during 2-h periods in the 1–25-h range, which

was later upgraded by Charba and Samplatsky (2009).

Then, Charba et al. (2011) introduced a companion

LAMP predictand called ‘‘convection,’’ where convec-

tion is defined as either U.S. Weather Surveillance

Radar-1988 Doppler (WSR-88D; Crum and Alberty

1993) composite reflectivity (CREF) $ 40 dBZ or $1

NLDNCG lightning flashes. While feedback from users

of LAMP convection and CG lightning forecast guid-

ance has been mostly favorable, some aviation users

indicated a need for improved skill, sharpness, and res-

olution of the probabilities. To address this need, MDL

recently upgraded this guidance through incorporation

of advanced, finescale radar and lightning observational

data together with HRRR model output, which is the

subject of article.

It is relevant to mention here that over the past

20–30 years major scientific advances have beenmade in

understanding physical and kinematic processes associ-

ated with lightning production in thunderstorms. These

advances have been enabled largely by the advent of

four-dimensional radar reflectivity mapping of individ-

ual thunderstorm cells by WSR-88D radars (Crum and

Alberty 1993; Crum et al. 1993) and lightning mapping

by ground- and space-based lightning locating systems

(LLSs; Nag et al. 2015). Both laboratory experiments

(e.g., Takahashi 1978) and diagnostic studies of the in-

ternal structure of thunderstorms using radar and

lightning data (e.g., Carey and Rutledge 2000; Lang and

Rutledge 2002) indicate cloud electrification results

from hydrometeor (graupel, hail, and supercooled water

droplets) collisions in the mixed-phase region of intense

convective cloud updrafts. Consistent with this cloud

electrificationmechanism, reflectivities of around 40dBZ

within intense thunderstorm updrafts from about

the 2108 to 2208C (environmental) height level (;6–

12km) have been found statistically well correlated with

CG flashes (Vincent et al. 2004; Yang and King 2010;

and Mosier et al. 2011). Also, these findings have been

essentially confirmed through thunderstorm numeri-

cal simulations with explicit modeling of thunderstorm
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dynamics, kinematics, and cloud microphysics and

electrification (Mansell et al. 2005; Fierro et al. 2006;

Kuhlman et al. 2006, Barthe and Pinty 2007; Calhoun

et al. 2014). Since the upgraded LAMP convec-

tion and lightning model incorporates cutting-edge

radar and lightning data as well as output from the

‘‘convection-allowing’’ HRRR model, the degree to

which these scientific advances are incorporated in the

present LAMPmodel (or will be incorporated in a future

LAMP upgrade) is noted at various points in the body

of this article.

2. LAMP predictand and predictor upgrades

LAMP convection and lightning guidance upgrades

were enabled through incorporation of 1) finescale ob-

servational data consisting of Multi-Radar Multi-Sensor

(MRMS) reflectivity products (Smith et al. 2016; Zhang

et al. 2016) and total lightning measurements [TL,

comprised of CG and intracloud (IC) flashes] from the

Earth Networks Total Lightning Network (ENTLN;

Liu and Heckman 2012) and 2) mesoscale output from

the HRRR model (Benjamin et al. 2016). MRMS and

ENTLN observational data are used to upgrade the

LAMP convection and lightning predictands, and these

data along with HRRR forecasts are also used to specify

new predictors. As radar and lightning data are used for

both the LAMP predictands and predictors, they have

critical roles. Thus, it is relevant to discuss the quality

and characteristics of these observational data inputs for

both the present (upgraded) and previous LAMP con-

vection and lightning products.

a. Radar data

At the time the previous LAMPCG lightning (Charba

and Liang 2005a; Charba and Samplatsky 2009) and

convection (Charba et al. 2011) guidance products

were being developed, the deployment of WSR-88D

radars within the Next Generation Weather Radar

(NEXRAD) program (Crum and Alberty 1993; Crum

et al. 1993) had been completed, but real time avail-

ability of NEXRAD data was limited to the locally

produced, coarse-resolution Radar Coded Message

(RCM) product (OFCM 2017). RCM data were com-

prised of six broad categories of peak CREF in 10-km

square grid boxes only twice each hour for the coverage

area of each WSR-88D radar. Though Kitzmiller et al.

(2002) developed and applied effective automated

CREF screening procedures to remove various types of

nonprecipitation echoes in CONUSmosaics of the local

RCM grids, Charba and Liang (2005b) found these grids

had enough residual ‘‘false’’ echoes to warrant their

development and application of a simple, supplemental

false precipitation echo screening procedure prior to

application in the LAMP CG lightning and convection

probability products (referenced above).

Less than a decade later, the National Oceanic and

Atmospheric Administration (NOAA) National Severe

Storms Laboratory (NSSL) developed the MRMS sys-

tem to produce nationally mosaicked grids of multiple,

locally produced NEXRAD radar reflectivity-based

products (OFCM 2017). These grids were produced

every 5min beginning in early 2011 and every 2min

since August 2013 with 0.018 3 0.018 pixel (roughly
1 km 3 1 km) spatial resolution for the full range of

values of a number of reflectivity-based products, in-

cluding CREF, vertically integrated liquid (VIL; Greene

and Clark 1972), and the peak height of $30 dBZ re-

flectivities. The availability of these MRMS products

allows replacement of coarse resolution RCM (CREF)

data in LAMP with fine resolution MRMS CREF and

VIL products, which constitutes a major LAMP upgrade.

Note, however, that LAMP use of only two MRMS

products (CREF and VIL) is quite limited compared to

MRMS products available to field forecasters today

(Smith et al. 2016;OFCM2017; https://www.nssl.noaa.gov/

projects/mrms/operational/tables.php). Current MRMS

products also include reflectivity at various heights

above the freezing level and vertically integrated ice,

which have been shown to be related physically (e.g.,

Carey and Rutledge 1996; 2000) and statistically

(Vincent et al. 2004; Cecil et al. 2005; Yang and King

2010; and Mosier et al. 2011) to lightning. Unfortu-

nately, these products could not be used in the current

LAMPmodel since they did not become available in the

NSSL MRMS archive until October 2016 [H. Reeves

(NSSL), 2019 email communication], which is after the

present January 2012–May 2016 LAMP developmental

sample period. Thus, inclusion of these more recent

MRMS products is a high priority in a planned near-

term upgrade of the current LAMP convection and

lightning guidance products.

The quality of MRMS products has significantly im-

proved over the years since NSSL initiated their exper-

imental production and archival in 2011. In particular, the

presence of nonprecipitation echoes has been steadily

declining due to development and application automated

nonprecipitation echo screening procedures (Smith et al.

2016; Zhang et al. 2016). Further, advancements in false

echo screening have been strong in recent years through

incorporation of dual polarimetric radar measurements

(Tang et al. 2014; Krause 2016). On the other hand, since

the LAMP convection and lightning model develop-

mental sample extends back to January 2012, this pre-

dates recent MRMS data quality advancements, and

Charba et al. (2017) found sporadic contamination from
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nonprecipitation echoes, especially in the early years.

Also, weak radar coverage over western portions of the

CONUSWSR-88D network resulting from sparse radar

siting and rugged mountainous terrain presents an on-

going coverage problem there (Maddox et al. 2002).

These concerns prompted Charba et al. (2017) to un-

dertake development of an automated MDL supple-

mental quality control (QC) process for the CREF and

VIL products used in LAMP. The data quality investi-

gation and development of an elaborate supplemental

QC process involved use of 5-km grids of maximum

CREF, VIL, and echo top height at 15-min intervals,

where the maximumwas specified as the highest MRMS

pixel value in a 5-km grid box. Charba et al. (2017)

document the data quality investigation, a description of

the QC process, and its contribution to LAMP convec-

tion forecast performance.1 Here, it suffices to note that

the QC’d 5-km maximum CREF and VIL grids com-

prised the radar database from which the convection

predictand and predictors were specified.

b. Lightning data

CG flash data dating back to 1994 have been used for

development of previous LAMPmodels, and these data

have been used operationally in those models from 2004

to 2018. Over this period the CG data source has been

the NLDN (Cummins et al. 1998). From its inception in

1989 (see Orville 2008 for the history of NLDN) until

2013, NLDN has been detecting mostly CG return

strokes (see Krider et al. 1980 for a discussion of con-

trasting electromagnetic impulses emitted by CG return

strokes versus IC lightning). NLDN groups CG strokes

into flashes to mimic ‘‘lightning strikes’’ seen visually,

as all strokes within 10 km and 1 s of each other are

grouped into a CG flash (Cummins et al. 1998). Over the

1994–2018 period, the NLDN CG flash detection effi-

ciency (DE; the detected percentage of actualCGflashes)

and positioning accuracy over the CONUS has gradually

improved from $70% to $90% and from #4 to #1km,

respectively, (Cummins et al. 1998; Mallick et al. 2014)

due to several NLDN system upgrades. Then, in mid-

2013 all NLDN network sensors were replaced with an

upgraded version that is sensitive to both very low

frequencies and high peak currents that characterize

CG strokes and to higher frequencies and lower peak

currents that characterize IC ‘‘pulses.’’ From an in-

vestigation of NLDN-detected IC pulses from rocket-

triggered lightning in Florida during 2004–13, Mallick

et al. (2014) reported an NLDN IC pulse DE of#32%.

Using the upgraded NLDN sensor measurements during

2014 together with a newly formulated IC pulse grouping

algorithm, Murphy and Nag (2015) obtained NLDN IC

flash DE values in the 50%–60% range using lightning

mapping array (LMA; Thomas et al. 2004) ground truth

data in Oklahoma and Colorado. With such improved

IC flash DE together with continuing high DE for CG

flashes, the upgradedNLDNmay be viewed as a TLLLS.

Meanwhile, Earth Networks, Inc. began providing TL

flash data CONUS-wide in 2009 with their own ENTLN

LLS. Note that ENTLN detects CG strokes and IC

pulses as with the upgraded NLDN, though it defines

CG and IC flashes with a smaller (0.7 s) time criterion

than for NLDN [the ENTLN spatial criterion is 10 km

(Liu et al. 2014), which is the same as for NLDN CG

flashes]. ENTLN is distinguished by its use of ‘‘broad-

band’’ (1 Hz–12mHz) sensors, which are sensitive to

both CG strokes and IC pulses (Liu et al. 2014). In 2012,

ENTLN was selected as the exclusive contract provider

of TL data to the U.S. government for both research and

operational applications. As we were planning a major

upgrade of the LAMP convection and lightning models

(the subject of this article), the potential use of ENTLN

TL data was investigated by examining the quality of a

January 2012–December 2015 sample using NLDN CG

flash data as a benchmark of quality for the CG com-

ponent of ENTLN TL flash data (Charba et al. 2015).

This study showed that within the CONUS borders

ENTLN CG flash counts were substantially higher than

NLDN CG flash counts prior to an ENTLN waveform

processing upgrade in June 2013, whereas these counts

were close to one another afterward. Many spot checks

conducted by the authors since then indicate the latter

result still remains true today.

Regarding ENTLN TL (i.e., CG1 IC) flash detection

performance, several studies have shown marked im-

provement over the years. With an early 3-yr ENTLN

sample (2011–13), Rudlosky (2015) found ENTLN de-

tected about 72% of optically observed TL flashes by

the Tropical Rainfall Measurement Mission (TRMM)

Lightning Imaging Sensor (LIS) on board an orbiting

satellite over its southern CONUS field of view, with

yearly improvements from 62% in 2011 to 80% in 2013.

The Charba et al. (2015) study referenced above showed

ENTLN TL counts increased steadily CONUS-wide

over the 2012–15 sample examined, which resulted

from increased IC flash reporting with the June 2013

1 It bears mentioning NSSL has developed a MRMS radar

quality index (RQI; Zhang et al. 2012), which incorporates radar

beam height, terrain obstruction, and the atmospheric freezing

level. While NSSL has produced the RQI experimentally since

2012 (Zhang et al. 2014), an archive was not available to investigate

its potential application in LAMP. Since theRQIwas implemented

in a recent upgrade of the operationalMRMS system (Zhang 2018,

private communication), its potential use in a future LAMP up-

grade will be investigated.
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ENTLN upgrade (noted above) and another IC re-

porting increase with a subsequent June 2014 ENTLN

upgrade. The apparent improvement in ENTLN CG

and IC detection over this period is consistent with

high DE for IC and CG flashes (.95%) for a 2014–15

sample for Florida reported by Zhu et al. (2017) using

natural and rocket triggered lightning ground truth

data. The Zhu et al. study also showed quite high

ENTLNCGand IC flash classification accuracy (.90%)

following an ENTLN flash classification upgrade in

August 2015, which contrasts to much weaker ENTLN

flash classification performance in Florida reported by

Mallick et al. (2015) with an earlier (2009–12) sample.

Though improvements in ENTLN CG and IC detec-

tion over time have practical benefits, an evolving input

dataset is potentially problematic in the statistically

based LAMP model. Note that at least three ENTLN

upgrades (June 2013, June 2014, and August 2015) fall

within the January 2012–May 2016 LAMP model de-

velopmental (‘‘training’’) sample, which resulted in a

decrease in CG counts and increases in both IC and TL

counts. In this LAMP application, a potential adverse

impact of this CG-to-IC reporting ‘‘swing’’ was allevi-

ated by not distinguishing between CG and IC flashes in

the predictand and predictor applications (sections 2c

and 2d). Meanwhile, the reporting growth in ENTLN

TL flashes over time was not addressed in the LAMP

model development, and thus it could cause an under-

forecasting tendency in the early portion of the sample

and overforecasting tendency afterward, including in real-

time application of LAMP. While this potential predic-

tion error has not been investigated, it will be addressed

via an upcoming LAMP model upgrade through use of

a more recent ENTLN sample with improved lightning

reporting stability. Further, improvedENTLNIC-versus-CG

reporting supports using IC flashes and CG flashes as

separate LAMP convection and TL predictors, which

could be beneficial considering large regional varia-

tions in the IC/CG ratio over the CONUS reported by

Boccippio et al. (2001) and Medici et al. (2017).

In the more distant future, we also anticipate incor-

porating satellite-based TL data into LAMP from the

recently launched Geostationary (GOES-16/17) Light-

ning Mapper (GLM) satellite system (Goodman et al.

2013). GLM provides continuous spatial and temporal

coverage of TL, which makes these data well suited

for merging with ground-based TL data. Also, comple-

mentary characteristics of ENTLN and GLM TL data

offer the potential of synergistic merging of these data in

LAMP. In particular, while both ENTLN and GLM TL

flash data have high DE (GLM DE is .80% when

averaged over day and night periods), ENTLN distin-

guishes between CG and IC flashes while GLM does

not. On the other hand, ENTLN TL DE is likely not

uniform (geographically) across the CONUS (which

especially applies to IC flashes) since ENTLN network

sensors are not evenly distributed over the CONUS,

whereas geographical uniformity of detection is be-

lieved to be an inherent strength of the GLM TL data

(Goodman et al. 2013). Still, early GLM TL data show

significant systematic error (e.g., resulting from sun glint,

‘‘solar intrusions,’’ and ‘‘parallax’’ in locations of wide

GLM viewing angles from nadir), as shown by Rudlosky

et al. (2019). Before GLM data are applied in LAMP,

these data quality concerns should be addressed.

c. Convection and lightning predictands

The upgraded LAMP convection predictand is de-

fined as the occurrence/nonoccurrence ofMRMSCREF

$ 40 dBZ and/or one or more ENTLN TL flashes in a

20-km square grid box during a 1-h period. The CREF

component is specified from the QC’d 5-km CREF grids

(section 2a) as the maximum CREF pixel value in the

predictand grid box over four 15-min times within the

1-h valid period, which means the CREF peak is used

in the convection definition. In essence, this CREF as-

signment procedure acts to coarsen the MRMS spatial

scale from the native 1-km pixel resolution to 20km and

the MRMS time scale from 5 (or 2) to 60min. This scale

coarsening is a form of smoothing, which should im-

prove the match (correlation) between the predictand

and meteorological predictors in the ‘‘neighborhood’’

of a grid point (Schwartz and Sobash 2017). Also,

neighboring 20-km predictand grid boxes overlap by

10km (as their centers have 10-km spacing), which results

in a 10-km grid resolution while avoiding a reduction in

event occurrences that would arise with nonoverlap-

ping grid boxes. Since convection and lightning events

are rare, especially in northern latitudes during the cool

season, such boosting of predictand occurrences results in

(statistically) more robust samples and improved stability

of convection and lightning regression equations.

With assignment of the CREFmaximum to the 20-km

grid box, the binary (1/0 value) CREF component of the

convection predictand is obtained by applying the $40-

dBZ reflectivity criterion. The corresponding TL com-

ponent is treated similarly through application of the TL

criterion (i.e., the occurrence of one ormore TL flashes).

Finally, the convection predictand is obtained by com-

bining the CREF and TL components.

The TL predictand is defined identically to the TL

component to the convection predictand discussed

above. Though this implies the TL predictand is

strongly correlated to the convection predictand, the

two predictands are substantially unique, as the con-

vection relative frequency is roughly double the TL
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relative frequency (section 4a). This implies $40 dBZ

radar echoes often occur without lightning, and con-

vection predictand occurrences are mostly based

on $40 dBZ radar echoes.

All upgrades to the convection and lightning pre-

dictands are summarized in Table 1, themost basic being

reduction in valid period from 2 to 1 h and reduction in

spacing of gridbox centers from 20 to 10km. Note that

the switch from the legacy RCM reflectivity to MRMS

CREF should contribute to a more robust convection

predictand, as the spatial, temporal, and nominal reso-

lutions of the latter far exceed that for the former (see

OFCM 2017 for a description of RCM product). Fur-

ther, the MDL supplemental QC applied to the MRMS

CREF (Charba et al. 2017) is more comprehensive and

rigorous than that applicable to RCM reflectivity data

(Charba and Liang 2005b).

The replacement of CG flashes with TL flashes has

benefits in LAMP for both the convection and lightning

predictands. For convection, the incorporation of IC

flashes expands the convection definition, asmany studies

have shown most lightning flashes detected by ground

networks are IC (e.g., Boccippio et al. 2001; Charba et al.

2015; Medici et al. 2017); the lightning event definition

expansion also applies to theLAMP lightning predictand.

Note also that the relative frequencies of reported IC

flashes and CG flashes can vary greatly between thun-

derstorm events. For example, Carey andRutledge (1998)

found extreme IC:CG ratios (in the 20–70 range) in a

severe thunderstorm case study that contained hail and

tornadoes in the High Plains, whereas Boccippio et al.

(2001) and Medici et al. (2017) reported mean IC:CG

ratios of 3–4 CONUS-wide and factor-of-10 regional

variations over the CONUS using multiyear ground-

and satellite-based lightning data historical samples.

This implies (LAMP) CG-based lightning forecast guid-

ance could be misleading for users in cases of thunder-

storm events dominated by IC flashes. Also, the inclusion

of IC flashes in the LAMP predictand definition can

increase the lead time for CG flashes, as MacGorman

et al. (2011) reported that IC flashes often preceded

CG flashes by 5–10min in north Texas and Oklahoma

based on ground observing networks during May–

August 2005.

d. Convection and lightning potential predictors

As noted in section 1, a basic function of the LAMP

model is to issue hourly updates of MOS forecasts

using current weather observations (Ghirardelli and

Glahn 2010). Here, current MRMS and ENTLN

data are used to specify observations-based (Obs)

predictors, and hourly refreshed forecasts from the

HRRR provide an additional predictor input. Obs,

HRRR, and MOS potential predictors (Table 2) are

paired with LAMP convection and TL predictands

by evaluating these predictors at predictand grid box

centers.

TABLE 1. Characteristics of previous and upgraded LAMP

convection and lightning predictands. Abbreviations: RCM 5 ra-

dar coded messages; MRMS 5 Multi-Radar Multi-Sensor system;

NLDN5 National Lightning Detection Network; CG5 cloud-to-

ground lightning flash; ENTLN5Earth Networks Total Lightning

Network; TL (total lightning) 5 CG 1 in-cloud lightning (IC)

flashes.

Predictand Previous Upgraded

Valid period 2 h 1 h

Valid area 20-km grid box 20-km grid boxa

Radar database RCM MRMS

Lightning database NLDN CG ENTLN TL

a Centers of upgraded 20-km grid boxes are only 10 km apart

(see text).

TABLE 2. Observational (Obs), High Resolution Rapid Re-

fresh (HRRR), and model output statistics (MOS) potential

predictor variables for LAMP convection and total lightning

(TL) predictands. For Obs, hh:** is clock time, where hh is

LAMP cycle hour (UTC) and ** denotes minutes. Abbreviations

in are as follows: max 5 maximum value in a 10-km grid box;

MRMS 5 Multi-Radar Multi-Sensor system; CREF 5 composite

radar reflectivity; VIL 5 vertically integrated liquid; GFS and NAM

are defined in the text.

Potential predictor variables

Obs MRMS max CREF at hh:14

MRMS max CREF at (hh 2 1):44

MRMSmax CREF at hh:142MRMSmax CREF at

(hh 2 1):44

MRMS max VIL at hh:14

60-min TL count ending at hh:15

30-min TL count ending at hh:15

30-min TL count ending at hh:15–30min TL count

ending at (hh 2 1):45

Predictand monthly relative frequency

HRRR CREF

VIL

1-h precipitation amount

Precipitable water

Surface moisture divergence

Lifted index

Convective available potential energy

Lightning threat 3 index

MOS GFS-based (and NAM-based) predictand

probability

GFS-based predictand probability 3 NAM-based

predictand probability

GFS-based (and NAM-based) predictand

probability 3 predictand monthly relative

frequency

GFS-based (and NAM-based) predictand

probability 3 terrain elevation
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1) OBS

Persistence of current weather observations together

with their simple extrapolation can be a powerful

predictive tool for the next several hours in automated

short-range weather prediction (Ghirardelli and Glahn

2010; Glahn et al. 2017). This arises because the effec-

tiveness of short-range predictors based on large-scale

NWP model output is hindered by model latency and

dynamical adjustments (‘‘spinup’’) within 4–6 h follow-

ing initialization. Persistence parameters may be bene-

ficial even in the case where potential predictors from

the output from finescale, rapidly updating models such

the HRRR (Benjamin et al. 2016) are used since such

models may not mirror current observations well after

model initialization (Glahn et al. 2017).

Current radar and lightning observations have long

been used to fill the short-range predictive void left by

NWP output for automated short-range thunderstorm,

lightning, and convection prediction (Charba 1977;

Charba and Liang 2005a; Dupree et al. 2009; Charba and

Samplatsky 2009; Charba et al. 2011). In the present

study, gridded MRMS CREF (and VIL) and ENTLN

TL observations, underlying all but the last variable in

the top section of Table 2, function as persistence pre-

dictors for the LAMP convection and TL predictands.

Here, ‘‘persistence’’ means the most recent (current)

observation is applied as a constant (fixed) predictor

across multiple LAMP forecast projections (lead times),

where the regression coefficient (in an associated re-

gression equation) normally reduces its predictive im-

pact (weighting) with increasing lead times. In Table 2

the valid times of the currentMRMS reflectivity product

and TL count (persistence) predictors are indicated. In

addition, these persistence predictors are also displaced

(advected) forward in time and space to enhance their

predictive value with increasing LAMP predictand valid

times. Henceforth, the terminology ‘‘initial’’ is used to

denote the current time (persistence) predictors and

‘‘advected’’ denotes the displaced (persistence) pre-

dictors. Thus, the complete list of potentialObs predictors

in Table 2 consists of the ‘‘initial’’ and ‘‘advected’’ forms

of the CREF, VIL, and TL count variables.

An initial CREF (or VIL) grid is specified as the in-

stantaneous MRMS CREF (VIL) pixel maximum value

in a 10-km grid box centered on the 20-km predictand

box. Note that using the pixel maximum in a 10-km grid

box for the predictor specification is akin to using the

pixel maximum in a 20-km grid box in case of the con-

vection predictand, but the length scale in the former is

10 km rather than 20km in the latter (section 2c; see

Schwartz and Sobash 2017 for a review of alternative

neighborhood approaches for rendering fine-grid data

to coarser mesh grid points). This analogy also applies

for the TL predictors and predictand, where the TL flash

count constitutes the core parameter. Also, to maxi-

mize the correlation between the initial grids and the

predictands the most current MRMS and ENTLN TL

observations (valid 14 and 15min after the top of the

hour, respectively) for a given hourly LAMP cycle run

are used (Table 2). Also, the CREF- and TL-based

predictor time scales are effectively lengthened by also

using the CREF parameter 30min earlier and aggre-

gating the TL counts over 30- and 60-min periods.

The advection of an initial grid consists of performing

simple Lagrangian displacement using a weighted mean

of predicted 850- and 500-hPa winds from the National

Centers for Environmental Prediction (NCEP) Global

Forecast System (GFS; Kanamitsu et al. 1991); an early

version of the advectionmodel is described inGlahn and

Unger (1986). The 850- and 500-hPa wind weights were

predetermined heuristically (by a team of MDL devel-

opers that included the lead author) by visually com-

paring experimentally advected grids against verifying

grids over many cases.

Several postprocessing operations are applied to the

initial and advected Obs variables to obtain the final set

of potential Obs predictors. These consist of the appli-

cation of truncation bounds, the formulation of binary

predictor variables, and the application of conventional

grid smoothing. Truncation is applied to prevent po-

tentially troublesome ‘‘outlier’’ values,2 binary pre-

dictors help account for nonlinear relationships in

linear regression equations, and smoothing is applied

to filter random, finescale variability (noise) and thus

improve the predictor–predictand correlations. More

information on the variable truncation and smoothing

procedures is provided in the appendix.

Finally, the last variable in the top section of Table 2,

predictand monthly relative frequency (PMRF), de-

serves elaboration, as it can have a significant pre-

dictive benefit when combined with a MOS probability

(as shown in the bottom part of Table 2), especially

for the longer-range LAMP forecast projections (i.e.,

projections beyond the 17-h maximum of HRRRmodel

forecasts). The PMRF is computed separately for each

1-h valid period, 10-km grid point, and month to re-

solve geographical and diurnal variability in the con-

vection and TL predictands over the course of the year.

Since LAMP convection occurrences are rare, especially

during cool-seasonmonths, PMRFs based on the January

2A linear regression equation containing predictor outlier values

may cause (problematic) predictand estimates (forecasts) outside

the 0–1 range of the predictand observations.
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2012–March 2016 developmental sample were quite

choppy. Thus, extensive smoothing across adjacent grid

points, valid periods, and months (see the appendix) was

applied to obtain spatially and temporally coherent

PMRFs. In the case of TL, which is rarer than convection,

the sample was extended backward to 1997 by using

NLDNCG data prior to 2012. This choice was supported

through preliminary tests that showed broad spatial and

temporal distributions of CG-based and TL-based rel-

ative frequencies are reasonably similar to one an-

other. Since the space–time distributions of these

lightning relative frequencies are more relevant in a

predictor-use context than their absolute magnitudes,

the choice of computing the relative frequencies with

the CG-TL composite sample is reasonable. The

benefit of the extended sample is that lightning rela-

tive frequencies are relatively coherent, and thus

the follow-on smoothing of these grids was lighter

than for convection.

2) HRRR

HRRRpotential predictors (middle section of Table 2)

are obtained from archived output from the 3-kmHRRR

model (experimental version3; Benjamin et al. 2016). Key

features of the HRRR include an hourly run cycle, non-

hydrostatic dynamics with explicit modeling of convec-

tion, and assimilation of radar reflectivity and lightning

data. Potential predictors include convective instability

measures, surface moisture flux divergence, and precipi-

tation parameters, which are commonly used for thun-

derstorm and lightning prediction (e.g., Bright et al. 2005;

Burrows et al. 2005; Shafer and Fuelberg 2008). Also,

included are HRRR-simulated CREF and VIL parame-

ters (which mirror Obs versions in Table 2) and the

lightning threat 3 index. The latter is a measure of the

TL threat defined by McCaul et al. (2009), which con-

sists of a weighted combination of the model-simulated

vertically integrated ice and the vertical graupel flux.

Note that all of the HRRR parameters in Table 2 are

from direct model output, except surface moisture di-

vergence, which is computed from HRRR 10-m wind

and 2-m specific humidity forecasts. Also, because of

HRRR latency (due to model run time), the most cur-

rent HRRR cycle that can be used in an hourly LAMP

cycle hh is hh 2 1. Finally, to enhance cycle-to-cycle

consistency in the HRRR predictor input into LAMP,

all HRRR potential predictors in Table 2 are also used

from the previous HRRR cycle (hh 2 2).

The specification of HRRR predictors on the LAMP

10-km grid from the native 3-kmHRRRgrid is similar to

that for the MRMS variables in that all HRRR grid

point values within a 10-km grid box are used in the as-

signment.One slight difference is that ameanof those values

(rather than the maximum) is used, which constitutes an al-

ternative spatial smoothing procedure in the neighborhood

of the 10-km grid point (Schwartz and Sobash 2017). Also,

the same postprocessing procedures applied to the

MRMS and TL variables [Table 2; section 2d(1)] were

applied to the HRRR variables (see the appendix).

Finally, it is worth noting that, as for the MRMS

reflectivity products in the top section of Table 2, addi-

tional potentially useful HRRR predictor parameters

for LAMP convection and TL have become available

since the May 2016 ending of the LAMP developmental

sample. These HRRR parameters include simulated

reflectivity at the2108C level, echo top height, vertically

integrated graupel, and maximum updraft velocity in a

vertical column, which have been linked to charge sep-

aration in the upper levels of intense convective cloud

updrafts in previous studies (Carey and Rutledge 2000;

Lang and Rutledge 2002; Vincent et al. 2004; Cecil et al.

2005; Yang and King 2010; and Mosier et al. 2011).

These new HRRR parameters will be included as po-

tential predictors in a pending LAMP upgrade.

3) MOS

As noted in section 1, MOS forecasts produced four

times per day are updated hourly in LAMP over the

1–25-h forecast range. Note that a practical benefit of the

MOS-updating strategy in LAMP is that the output

from multiple NWP models can be used without be-

ing overwhelmed with an excessive number of po-

tential NWP model predictors. This advantage is used

by developing separate MOS convection and TL

probabilities based on each of two NCEP models:

the GFS and the North American Mesoscale Model

(NAM; Rogers et al. 2005), and then applying them as

separate potential LAMP predictors (bottom section

of Table 2). In addition, assorted product variables

defined from these MOS probabilities (Table 2) are

designed to capture dynamic, nonlinear interactions

between the two component predictors and the con-

vection or TL predictand (Bocchieri and Maglaras

1983; Reap and Foster 1979). Further, a meteorologi-

cally static variable, such as the predictand monthly

relative frequency or terrain elevation (Table 2), is

‘‘dynamically activated’’ when multiplied with the

MOS probability (a dynamic predictor; Charba and

Samplatsky 2011b).

3 The HRRR model was operationally implemented on

NOAA’s Weather and Climate Operational Supercomputing

System in September 2014, and upgrades have been implemented

since then. The ‘‘experimental HRRR’’ contains model upgrades

destined for operational implementation.
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3. Development of LAMP convection and TL
probability regression equations

The regression estimate of event probability (REEP)

method (Miller 1964; Wilks 2006; Glahn et al. 2017)

is used to produce the LAMP convection and TL

probabilities. A forward screening technique (Glahn and

Lowry 1972; Wilks 2006) is used to select predictors for

the regression equations, which maximizes the re-

duction of predictand variance [RV, which is synon-

ymous with explained predictand variance (Wilks

2006)]. The screening is applied to two forms of the

candidate predictor variables: continuous value and

grid binary (Jensenius 1992), as ‘‘continuous’’ pre-

dictors produce smooth distributions of forecast

probabilities and experience reveals the combination

of continuous and grid binary predictors yields en-

hanced forecast performance with fewer predictors

than if only one of these is used.

a. Equation stratification by LAMP cycle, forecast
range, and season

The convection and TL regression equations are

stratified by LAMP hourly cycle, forecast projection,

season, and geographical region. These stratifications

are supported by a developmental sample that in-

cludes all days from 1 January 2012 to 31 May 2016

(;4.4 years). The LAMP cycle stratification consists

of developing separate regression equations for each

of the 24-hourly cycles, which allows diurnal diversity

in predictors. The risk of cycle-to-cycle inconsistency

in the forecast probabilities is countered by offering

HRRR predictors not only from the latest hourly

HRRR cycle but also from the previous HRRR cycle

[Table 3; section 2d(2)]. A similar strategy is also

applied for MOS predictors, as MOS predictors are

offered not only from the most recent 6-hourly MOS

cycle but also from the previous MOS cycle.

Regression equations are also stratified by LAMP

forecast projection, such that a fixed, unique set of

predictors is applied to each of four forecast projection

ranges (Table 3). The adoption of this previously unused

strategy was based on findings from probability skill

sensitivity tests, wherein one or more of the three pre-

dictor types in Table 2 were excluded from test equa-

tions. These tests revealed (not surprisingly) that initial

and advected Obs predictors contribute most to fore-

cast probability skill at the shortest forecast projections,

whereas they contribute little or no skill beyond about

6h (section 4b). Thus, while all candidate predictor types

(Obs, HRRR, and MOS) are screened for projections in

the 1–12-h range, Obs predictors are excluded for lon-

ger projections, and HRRR predictors are not used for

projections beyond 17h (the maximum LAMP forecast

projection for which HRRR model forecasts were

available in the developmental dataset). This predictor

segregation strategy results in improved equation de-

velopment efficiency, as progressively fewer candidate

predictors are screened with increasing forecast-range

interval (Table 3) with little or no loss in forecast skill.

Potential probability inconsistencies across the forecast-

range interfaces are addressed by overlapping the ranges

by one or two hours and averaging the ensuing ‘‘over-

lapping probabilities’’.

The LAMP seasonal stratification consists of devel-

oping separate regression equations for each of three

calendar periods. The ‘‘cool,’’ ‘‘spring,’’ and ‘‘summer’’

seasons are defined as 16 October–15 March, 16 March–

30 June, and 1 July–15 October, respectively. This

seasonal stratification was originally used for MOS

thunderstorms prediction by Reap and Foster (1979)

to account for seasonal diversity in dominant thun-

derstorm forcing mechanisms; during the cool season

convection is typically associated with strong synoptic-

scale cyclones and weak convective instability, during

spring the associated cyclonic systems are generally

weaker and convective instability is stronger, and during

summer the cyclonic systems are usually quite weak and

convective instability is strong.

b. Geographical regionalization

With seasonal stratification of the LAMP develop-

mental sample and an overall sample comprised of 4.4

years, the number of days falling within each of the three

seasons is in the 400–600 range. Since convection and TL

occurrences are rare (i.e., climatic relative frequencies

are of the order of one occurrence per 100 cases) these

seasonal samples are not large enough to yield statisti-

cally stable regression equations (Wilks 2006) for indi-

vidual grid points. The opposite extreme is to combine

the predictor-predictand data over all grid points such

that a single ‘‘generalized operator’’ regression equation

(GOE; Bocchieri and Glahn 1972, p. 870) applies to all

forecast points.While attractive features of GOE include

prediction model simplicity and more stable regression

TABLE 3. Candidate predictor types (Table 2) applicable to four

forecast projection ranges (hours), where ‘‘✓’’ indicates the pre-

dictor type applies. Abbreviations and acronyms are as in Table 2.

Predictor type 1–12 11–14 14–17 16–25

MRMS and TL Obsa ✓

HRRR forecasts ✓
b

✓
b

✓

GFS/NAM MOS probability ✓ ✓ ✓
b

✓
b

a Initial 1 advected.
b Two model cycles.
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equations, the method does not generally accommo-

date geographical diversity of predictors4 (which could

hamper forecast probability performance) and compu-

tation of GOE regression equations can be challenging

with a very large number of developmental grid points.

A compromise strategy involves separate regression

equations for geographical regions [i.e., a regionalized

approach (REG)], which requires longer developmental

samples for regression equation stability than with GOE.

An even more formidable challenge with REG is non-

meteorological discontinuities in the probabilities across

region boundaries. For LAMP CG lightning probabilities

on a 20-km grid, Charba and Samplatsky (2009) found that

treating regional discontinuities with conventional grid

smoothing was only marginally effective, and the discon-

tinuity problem is more severe with finer grids.

Charba and Samplatsky (2011a) developed a novel

method to effectively address the regional discontinuity

problem, which they applied for high-resolution MOS

probabilistic quantitative precipitation forecasts (PQPFs)

on a 4-km CONUS grid (Charba and Samplatsky 2011b).

The method features specifying geographical regions

with slight overlap of neighboring regions and weighted

averaging of multiple regional forecasts in the overlap

areas. Note that while the number of overlapping re-

gions and their areal complexity was high in this PQPF

application, it was also shown PQPF skill was only

slightly less with a smaller number of simple regions

owing to use of a few dominant predictors that contain

the predictand relative frequency and terrain eleva-

tion at each grid point. With this strategy, the regional

overlap technique was also successfully applied for the

old 2-h LAMP convection and CG lightning guidance

with a relatively small number of regions across the

CONUS (Charba et al. 2011; Fig. 4).

In the present upgrade of the old LAMP convection

and lightning guidance, we use the overlapping regions

shown in Fig. 1, which are fewer in number and larger in

size than in Charba et al. (2011) since the developmental

sample here is smaller than that used before. Factors

considered in their delineation include the gradual

northward and westward climatological progression

of convection from the southeastern United States

[southeast region (SE)] during the cool season to all

of the United States during spring (reflected by the

south–north demarcation of regions over the eastern

United States), broad convection coverage throughout

the CONUS during summer, excluding the far western

United States [accounted for by the Pacific Coast region

(PC)], and substantially reduced radar data quality and

coverage throughout the western United States [ac-

counted for by the addedRockyMountain region (RM)].

A consideration that forced specification of relatively

TABLE 4. Highly ranked convection and total lightning (TL)

predictors for the 1–12-h forecast range (Table 3) over all LAMP

cycles, seasons, and geographical regions. Abbreviations are: init5
initial time; adv 5 advected; ltg threat 5 lightning threat index;

prob 5 probability; cnt 5 count; CREF 5 composite reflectivity;

VIL 5 vertically integrated liquid; precip amt 5 precipitation

amount. The acronymsMRMS, HRRR,GFS, NAM, andMOS are

as in Table 2.

Ranking Convection Total lightning

1 MRMS CREF (init) HRRR ltg threat 3 index

2 HRRR CREF GFS MOS prob

3 GFS MOS prob TL 30-min flash cnt (adv)

4 MRMS VIL (init) HRRR VIL

5 MRMS CREF (adv) TL 30-min flash cnt (init)

6 HRRR 1-h precip amt NAM MOS prob

7 HRRR VIL TL 60-min flash cnt (adv)

8 NAM MOS prob (GFS 3 NAM) MOS prob

FIG. 1. Overlapping geographical regions, with mixed colors in overlap bands.

4 Still, GOE can incorporate geographic specificity in the case

where specialized, point specific topo-climatic predictors that em-

body localized predictand relative frequency and topography

(Charba and Samplatsky 2011b) are used.
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large PC and RM regions is adequate developmental

samples, as samples for these regions were depleted by

missing data due to the MRMS supplemental QC.

c. Highly ranked convection and TL probability
predictors

With the forward-selection screening technique (Glahn

and Lowry 1972; Wilks 2006), the first selected predictor

yields the maximum predictand RV, and subsequently

selected predictors yield peak incremental RVs. Thus,

predictors selected earliest contribute most to the cu-

mulative RV and to forecast probability. For the LAMP

convection and TL equations, the selection cutoff con-

sisted of either an arbitrary maximum of 20 predictors or

fewer predictors where the incremental RVwith the next

candidate was below 0.001.

To assess the relative importance of individual pre-

dictors over many regression equations, a simple rank-

ing scheme was devised, which involved assignment of

selection-order values to predictors. Since an equation

has 20 or fewer predictors, the order value for the first

selected predictor was 20, and the value for each suc-

cessive predictor was reduced by one such that these

values are 19, 18, etc. Since predictors vary as a function

of LAMP cycle, season, and geographical region, the

ordering values were summed over all (504; 24 cycles 3
3 seasons 3 7 regions) convection or TL equations.

Then, predictors were ranked according to the ordering-

value sums (the higher the sum, the higher the ranking).

Note that this ranking procedurewas applied to the 1–12-h

(shortest) forecast range, as all candidate predictors in

Table 2 were screened only for this range (Table 3).

Based on this ranking scheme, the eight highest

ranked convection and TL predictors are listed in

Table 4. Note that the list for both convection and TL

exhibit approximately equal proportions of Obs,

HRRR, andMOS predictors (Table 2), which suggests

probabilities for these predictands should be broadly

similar to one another. Conversely, the predictor lists

also exhibit marked distinctions. Specifically, Obs pre-

dictors in the convection list consist exclusively of

MRMS CREF and VIL parameters, which implies

the dominance of the CREF component over the TL

component in the convection predictand (section 2c).

Meanwhile, Obs predictors in the TL list consist ex-

clusively of TL count parameters, reflecting their in-

herent correlation with the similarly defined TL

predictand. Regarding HRRR predictors (Table 4),

note that 1) they are highly ranked in both lists, and 2)

lightning threat 3 index is top ranked in the TL list and

is absent in the convection list. These findings indicate

HRRR predictors have strong impacts for both con-

vection and TL, and these impacts are rather unique to

each (shown in section 6). It is worth noting that when

new MRMS and/or HRRR parameters (i.e., 30–40-dBZ

reflectivity at or above the 2108C level, vertically in-

tegrated ice, echo top height, updraft strength) found

to be linked to lightning in the literature (Carey and

Rutledge 2000; Lang and Rutledge 2002; Vincent et al.

2004; Cecil et al. 2005; Yang and King 2010; Mosier et al.

2011) are incorporated in a pending upgrade of the

LAMP convection and TL models, it will be interesting

to investigate their potential impact in LAMP convec-

tion and TL predictor rankings.

FIG. 3. Convection and TL BSS vs forecast projection for the CP

and RM regions (Fig. 1) based on the 0600 and 1800 UTC LAMP

cycles combined and 113 evenly spacedMay–September days from

the period 6 May 2014–31 May 2016 (the same sampling period as

for Fig. 2). Abbreviation in legend: ltg 5 lightning.

FIG. 2. CONUS BSS vs forecast projection for 1-h upgraded

convection and TL probability. The verification sample consists of

the LAMP 0600 and 1800 UTC cycles combined for 246 quasi-

evenly spaced days [93, 79, and 74 days for cool, spring, and sum-

mer seasons (see text for the season definitions), respectively] from

6 May 2014 to 31 May 2016.
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4. Performance scoring of convection and lightning
probability

a. Skill, reliability, and sharpness for CONUS, geo-
graphical regions, and seasons

The measure of skill used for the convection and

lightning probabilities is the ‘‘half-Brier score’’ (Brier

1950) improvement on climatology [henceforth called

Brier skill score (BSS); Wilks 2006], where convection

and TLmonthly relative frequencies discussed in section

2d(1) serve as the climatology reference. The BSS is a

standard measure of skill of estimated probabilities and

reliability diagrams show their calibration and sharpness

(Wilks 2006).

BSS versus forecast projection curves for convection

and TL probabilities are shown in Fig. 2, based on a

verification sample consisting of 246 evenly spaced days

from 6 May 2014 to 31 May 2016 and the 1800 and

0600 UTC LAMP cycles. Note that since these LAMP

cycles are ‘‘diurnally diverse’’ [i.e., convection is (cli-

matologically) in a stage of rapid diurnal growth at the

former cycle and in a mature stage at the latter cycle],

BSS values for these two cycles combinedmay provide a

fair representation of skill across all 24-hourly LAMP

cycles. The BSS curves for both convection and TL

(Fig. 2) feature relatively high skill at the 1-h forecast

projection and a sharp skill fall off to 4 h. Thereafter, the

skill profiles abruptly level off with projection out to

25 h, except for a modest skill fall off in the 16–18-h

range (which is attributed to the loss of HRRRpredictors

beyond 17h; Table 3). Meanwhile, the convection versus

TL skill curves also exhibit notable distinctions: TL shows

higher skill for the 1-h projection but the subsequent skill

fall-off is sharper and deeper. This suggests initial and

advected observational (persistence) predictors at the

first forecast projection are stronger for TL, whereas for

longer projections HRRR and MOS predictors are ap-

parently weaker for TL than for convection. (The sensi-

tivity of skill to the individual Obs, HRRR, and MOS

predictor types, discussed in section 4b, addresses this

further.)

Strong regional contrasts in convection and TL BSS

appear across the CONUS. For example, Fig. 3 shows

a comparison of convection and TL BSS curves for the

CP and RM regions (Fig. 1) for a verification sample

comprised of a May–September subset of the sample

used for Fig. 2. Note that BSS values for both con-

vection and TL are much higher for the CP region

than for the RM region. (For convection the contrast

in skill for the western versus the eastern United States

is also shown in Fig. 4). The relatively low skill in the

(mountainous) RM region needs to be investigated

to better understand the underlying cause, though the

well-known poor quality of radar data across the

FIG. 5. CONUS LAMP seasonal BSS vs forecast projection for

(top) convection and (bottom) total lightning. The verification

samples consist of the 0600 and 1800 UTC cycles combined for 93

cool, 79 spring, and 74 summer season days from the period 6 May

2014–31 May 2016 (the same sample as for Fig. 2).

FIG. 4. Convection skill vs forecast projection for the east and

west United States with generalized operator (GOE) and re-

gionalized (REG) regression equations (see text). The verification

sample is the same as in Fig. 2
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western United States (Maddox et al. 2002; Charba

et al. 2017) may be a factor and even the quality of

TL data in the western United States could be ad-

versely impacted by relatively sparse ENTLN sensor

density there.

A comparative test of convection probability skill with

regionalized (REG) versus nonregionalized (GOE)

regression equations (section 3b) is shown in Fig. 4.

In this figure, for simplicity the verification data are

aggregated over the five regions east of the Rocky

Mountains (‘‘East’’; Fig. 1) and similarly for the RM

and PC regions comprising the western United States

(‘‘West’’). The figure shows a small skill boost of

REG over GOE for the East and a more substantial

boost in theWest. This finding of somewhat improved

skill with regionalization via a 4-yr or larger devel-

opmental dataset is consistent with findings from

similar tests reported in Charba et al. (2011) and

Charba and Samplatsky (2011b).

CONUS BSS-versus-projection curves for convection

and TL stratified by LAMP cool, spring, and summer

FIG. 6. Reliability diagrams stratified by LAMP season for (left) convection and (right) TL probabilities over the

CONUS for the (top) 1–5- and (bottom) 11–15-h forecast projections combined. Seasons and verification samples are the

same as in Fig. 5. Plotted points are (mean probability, mean event relative frequency) pairs within 10% probability

intervals, except the first interval is 0%–5% and the last interval is 95%–100% [points with less than 250 cases are not

plotted (bottom-right panel)]. Perfect reliability is indicated by the dashed diagonal line in each panel. Sample mean

seasonal probabilities and corresponding mean relative frequencies of the verifying observations are depicted by small

arrows plotted near the lower-left corner of each reliability diagram. The inset in each panel is a histogram of mean

probability (logarithmic ordinate scale) for the same probability intervals as for the reliability diagrams.

TABLE 5. Combinations of Obs, HRRR, and MOS predictor

types (right column) used in experimental convection and TL

probability models. Character strings used to denote model names

are listed in the left column; these model names are also used in the

text and in Fig. 6. Acronyms are as in Table 2.

Model name Predictor type(s) used

All Obs (initial 1 advected); HRRR; MOS

All–advobs ‘‘All’’ 2 Obs (advected)

HRRR1MOS HRRR; MOS

HRRR HRRR

MOS MOS

Obs1advobs Obs (initial 1 advected)

Obs Obs (initial)
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seasons exhibit notable seasonal trends (Fig. 5). At the

shortest forecast projections seasonal skill is highest

during the spring for both convection and TL. At longer

projections the highest seasonal skill for convection

switches to the cool season. For most projections skill

is lowest during summer for both convection and TL,

which is attributed to relatively small space and time

scales with which convection and TL occur during this

time of the year.

Reliability diagrams for the convection and TL prob-

abilities for short- (1–5h) and medium-range (11–15h)

LAMP forecast projections are shown in Fig. 6. (The veri-

fication data are combined over five forecast projections to

avoid short-sample aberrations in the plots.) The diagrams

depict good reliability for both convection and TL (which

is especially true for the short range), as the plotted

points are close to the perfect reliability line over the

entire 0%–100% probability span. For the medium

range, moderate overforecasting of upper probabilities

is present for the cool season, though the associated

samples are relatively small.

The sharpness of forecast probabilities reflects the

degree to which the probabilities deviate from sample

means, where strong deviations indicate good sharpness

(Wilks 2006). In Fig. 6 sample mean seasonal convection

and TL probabilities together with corresponding rela-

tive frequencies of verifying observations are depicted

by small arrows plotted near the lower-left corner of

each reliability diagram. Note that these sample means

are quite small (i.e., ;5% for convection and less for

TL during the spring and summer seasons and for the

cool season both are just slightly above 0%). Contrast-

ingly, the inset probability histograms show that corre-

sponding convection and TL probabilities are distributed

over the entire 0%–100% probability range for the

short projections, and this also applies to the midrange

projections for convection. Thus, the probabilities are

not biased toward climatology [i.e., sample mean rel-

ative frequencies (RFs)]; instead, they exhibit strong

deviations from sample mean RFs (noted above),

which signifies quite good probability sharpness,

especially for convection.

b. Probability skill sensitivity to Obs, HRRR, and
MOS predictors

Here, we investigate how the three LAMP predictor

types used in LAMP [i.e., Obs, HRRR, and MOS (sec-

tion 2d; Table 2)], relate to convection or TL probability

skill with LAMP forecast projection. The investigation

was conducted through development and testing of ex-

perimental LAMP models that use an individual predic-

tor type and/or selected combinations (Table 5 specifies

predictor types used in each model) to see how convec-

tion and lightning probability skill with each relate to skill

with the ‘‘All’’ model (uses all three predictor types). For

brevity, thesemodelswere limited to amaximum forecast

projection of 16h.

BSS versus projection curves for the experimental

convection and TL probabilities (Fig. 7) reveal strong

skill distinctions among various predictor types rela-

tive to ‘‘All’’ predictor types (which shows highest

skill over all LAMP forecast projections). Note that

Obs1advobs skill is almost as high as for All for the

TABLE 6. Prescribed bias range corresponding to each probability

threshold and potential category (see text).

Threshold probability Potential category Bias range

Low Low 2.70–2.83

Medium Medium 1.03–1.13

High High 0.38–0.43

FIG. 7. CONUS BSS vs forecast projection for experimental

(top) convection and (bottom) TL probabilities. Predictor types

comprising each experimental convection and TL probability

model are indicated by themodel name in Table 5. The verification

sample consists of the 0600 and 1800 UTC LAMP cycles combined

for an evenly spaced subset of 216 days from 1 Jan 2012 to

31 May 2016.
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shortest two projections and Obs skill is close behind

at the first (1-h) projection. Note that Obs1advobs

skill curves together with All-advobs curves indicate

that Obs predictors contribute to All skill through-

out the 1–6-h range. Also, comparing Obs1advobs

and HRRR skill, we see clearly superior Obs1advobs

skill in the 1–3-h range and then higher HRRR skill

at four hours and beyond. Last, comparing HRRR and

MOS skill, we find similar skill levels over all pro-

jections, with a slight HRRR advantage at the shortest

projections and a slight MOS advantage near 16 h.

More significantly, combining these two predictor

types (HRRR1MOS) yields a clear skill boost, which

implies strong synergy between these NWP model

predictor types.

It is worth commenting on LAMP convection and

lightning forecast performance in relation to major ad-

vances that have been made over the past 15 years or

so in cloud-scale NWP modeling of intense convection

and lightning. Many of these NWP studies involve ap-

plications of various versions of the Weather Research

and Forecasting (WRF) community regional model

(Skamarock et al. 2008) over regional (continental)

domains, wherein convective cloud and hydrometeor

microphysics are explicitly simulated using ‘‘convec-

tion-allowing’’ (1–4 km) grid meshes. A basic chal-

lenge facing these applications is ‘‘spinup,’’ where

convection absent in the initial state (based on large-

scale analyses of basic atmospheric variables) develops

over the following 6 h so but with error in the precise

timing and placement of convective cells (Clark et al.

2010; Kain et al. 2010). To address this problem, a

number of works have applied simple, computation-

ally efficient methods to assimilate high-resolution

observations of nonmodel variables (such as radar

reflectivity and lightning measurements) in the initial-

ization with varying levels of success (e.g., Fierro et al.

2012; Fierro et al. 2013; Marchand and Fuelberg 2014;

Fierro et al. 2015; Lynn et al. 2015). Further, the

(operational) HRRR model (Benjamin et al. 2016)

applied in LAMP constitutes an advanced version of

WRF, and though both radar reflectivity and lightning

flashes are similarly incorporated in its initialization,

FIG. 8. Example 8–9-h (top) convection probability (%) and (bot-

tom) ‘‘potential’’ forecast from the 1800 UTC cycle for 6 Mar 2017.

(Since late 2017 a new color bar is being used for potential, which can

be seen at https://www.nws.noaa.gov/mdl/gfslamp/cnvltg.php.)

FIG. 9. Threat scoreandbiasbasedon23 2yes/no forecast/occurrence

convection and total lightning contingency tables, where yes

(no) forecasts are defined from medium and high (none and low)

potential, as described in the text. The verification sample is the

same as for Fig. 2.
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the LAMP probability skill sensitivity tests (discussed

above) imply these observational data are not well

represented in HRRR short-range forecasts, which

LAMP effectively compensated for by using these ob-

servational data directly as convection and lightning

predictors. Meanwhile, more complex, computationally

expensive methods also face observations–assimilation

obstacles, as Marchand and Fuelberg (2014) note in

their brief review. Finally, cloud electrification and

lightning have been explicitly simulated in several

studies involving WRF models. Using a simplified,

computationally efficient electrification scheme in a

WRF model, Fierro et al. 2013 obtained reasonable

electrification simulations in three diverse cases,

whereas more intricate schemes employed in Mansell

et al. 2002; Mansell et al. 2005; Kuhlman et al. 2006;

Barthe and Pinty 2007; Calhoun et al. 2014 are prob-

ably years away from real time application due largely

to high computational cost. Even then, LAMP-type

models may continue to have a useful predictive role

because of the inherent difficulty for these NWPmodels

to closely reflect current observations and to precisely

forecast the coverage, timing, location, and intensity of

convective storm cells (e.g., Clark et al. 2010).

5. Derivation and performance of convection and
TL ‘‘potential’’

In the previous section we saw that sharpness and skill

of the convection and TL probabilities decrease strongly

with increasing forecast projection, which is manifested

as a reduction in peak probabilities with projection,

particularly in the first 6 h. Also, probability sharp-

ness and skill exhibit marked seasonal and geo-

graphical variations. Such variability in probability

characteristics may pose a challenge for users, espe-

cially those who express forecast uncertainty in non-

probabilistic ways.

A traditional approach for addressing this problem

at MDL has been to complement the probability prod-

uct with a derived (categorical) yes/no forecast rendi-

tion. The latter is derived by applying predetermined

threshold probabilities that vary with forecast projection,

season, geographical region, etc., where the (occurrence)

forecast is yes when the probability equals or exceeds

the threshold value and no otherwise. A threshold

probability is derived objectively through an iterative

scheme where the threat score [TS; same as the crit-

ical success index (Schaefer 1990)] for the categorical

forecasts is maximized within a prescribed, narrow

bias range slightly above 1.0.5 Such categorical forecasts

have a near-perfect, constant bias despite probabilities

that vary strongly with forecast range, season, time of

the day, etc.

FIG. 10. Reported tornadoes, large hail, damaging wind compiled by the NCEP Storm Pre-

diction Center for the 24-h period spanning 1200 UTC 6 Mar–1159 UTC 7 Mar 2017.

5 Bias is defined as the number of forecast occurrences divided by

the number observed, and thus unbiased forecasts have a 1.0 value.

For most predictands, the TS is maximized when the bias is slightly

above 1.0 (slight overforecasting).
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On the other hand, the yes/no rendition of the prob-

abilities results in a huge loss of certainty information

contained in the probabilities. To address this problem,

Charba et al. (2011) formulated an extension to the two-

category deterministic product such that four cate-

gories of event threat (risk) (no, low, medium, and high)

are defined, which they coined ‘‘potential.’’ The deri-

vation of potential is analogous to that for the yes/no

categorization mentioned above, except that three

probability thresholds are used rather than one. The

bias ranges for these probability thresholds (Table 6)

was prescribed to produce rational distributions of the

four categories, with the caveat that the bias range

for the medium probability threshold (i.e., for medium

and high potential combined), is identical to that for

the yes/no case. This ensures that combining medium

and high (no and low) potential reproduces the tradi-

tional yes (no) forecasts.

An example convection potential map together

with the corresponding probability map is shown in

Fig. 8. Note that potential nicely portrays the four

convection threat levels while corresponding proba-

bilities vary greatly across the CONUS. Figure 9

shows convection and TL TS and bias versus projection

curves, where yes (no) forecasts consist of medium1high

(no1low) potential and the verification sample is the

same as for the corresponding BSS curves in Fig. 2. Note

that the respective BSS and TS curves in Figs. 2 and 9

parallel one another for both convection and TL as they

each show strong reductions in forecast skill and ac-

curacy with projection following high values at early

projections. Contrastingly, the bias curves in Fig. 9 ex-

hibit near-constant bias across the entire forecast pro-

jection range, with values at or slightly above 1.0,

which reflects the design of potential. Recall that this

quasi-constant bias attribute also applies to low and

high potential (Table 6). The constant bias feature of

potential should serve to make this derived product a

useful complement to the corresponding probabilities.

6. Subjective examination of probability and
potential forecast performance: A case study

In this section, insights into performance strengths

and weaknesses of the LAMP convection and light-

ning guidance are discussed through example forecast

and verification maps for a massive, explosive convec-

tion outbreak over the central United States during the

FIG. 11. Previously operational 2-h convection probability (%) for (a) 8–10-h projections from 1800 UTC 6 Mar

2017 and (b) upgraded 1-h convection probability (%) for 9–10-h projections for the same LAMP cycle. (c) As in

(a), but for CG lightning, and (d) as in (b), but for total lightning.
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late afternoon and night of 6–7 March 2017. For this

storm outbreak, Fig. 10 shows a 24-h map of tornado,

large hail, and damaging wind reports from the NCEP

Storm Prediction Center, most of which are from a 7-h

period spanning from 2300 UTC 6March to 0600 UTC

7 March.

a. Example of old 2-h probability versus new 1-h
probability maps

Since the upgraded 1-h convection and TL products

were developed to replace the corresponding 2-h prod-

ucts, improved forecast performance of the former

over the latter is warranted. Unfortunately, an objective

forecast performance comparison is not feasible since

the predicted and observed events are unique to each

of these products. On the other hand, subjective

comparisons of various properties of forecast quality

of the 2- versus 1-h products should be meaningful,

particularly to field users. Figure 11 shows maps of 2-h

convection and CG lightning probabilities for 8–10-h

forecast projections from 1800 UTC 6 March 2017

together with corresponding maps of 1-h convection

and TL probabilities for 9–10-h forecast projections.

These maps show strong improvement in both spa-

tial focus and sharpness of the 1-h probabilities over

the 2-h probabilities. Improvements in spatial focus

FIG. 12. (left) Convection probability (%) and (right) potential for (a) 0–1-, (b) 5–6-, and (c) 11–12-h forecast

projections from 1800 UTC 6 Mar 2017. Superimposed on each potential map are forecast hits (green), misses

(black), and false alarms, where the latter are depicted as areas of medium and high potential (see text for details of

the verification procedure).
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seen here are typical, as they reflect benefits resulting

from the grid mesh reduction from 20 to 10 km, the valid

period reduction from two hours to one hour, and fine-

scale HRRR predictors. For short forecast projections,

MRMS and TL observational predictors are largely re-

sponsible for similar improvements in detail and focus.

b. Example verification maps of 1-h probability and
potential

Here, the performance of the 1-h convection and

TL probability and potential guidance for the 6–7

March 2017 case is shown via verification maps. The

first step in the verification procedure consists of rendering

convection (TL) potential as yes /no forecasts, where

yes (no) at a 10-km grid point corresponds to medium

or high (no or low) potential (section 5). These yes/no

forecasts are then matched with observed convection

(TL) in 10-km grid boxes centered on the grid points.

A forecast hit is scored where a yes forecast coincides

with a convection (TL) occurrence (event), a miss is

scored for a no forecast and the event occurred, and a

false alarm arises with a yes forecast and the event

did not occur. Finally, the verification map is depicted

by superimposing hits (green color shading) and

FIG. 13. Key convection predictors pertaining to (left) Fig. 12b and (right) Fig. 12c. Abbreviations: init. 5 initial;

adv.5 advected; prob.5 probability. Acronyms in map legend (below each map) are the same as used in the text.
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misses (black color) on the associated potential map

[false alarms are shown via the ‘‘native’’ colors for

medium (medium orange) and high (dark orange)

potential]. Examples of such verification maps are

shown in Fig. 12 for convection (right panels; left

panels are the corresponding probability maps) [see

also Fig. 14 (convection) and Fig. 15 (TL) below].

Figure 12 depicts rapid growth of convection (green

and black areas in the verificationmaps) over the central

United States spanning a 12-h period after 1800 UTC

6 March. Specifically, during 1800–1900 UTC, which

corresponds to 0–1-h LAMP forecast projections

(Fig. 12a), LAMP did not forecast convection from

Kansas to Minnesota and none occurred, so the fore-

cast is correct. By 2300–0000 UTC 6–7 March (5–6-h

LAMP forecast projections from 1800 UTC), convec-

tion rapidly developed within a narrow band stretching

across these states, most of which LAMP did not predict

[shown in the right panel of Fig. 12b as the elongated

black band (misses) that changes to green (hits) only

along the northern flank]. Note that the corresponding

probability map (left panel of Fig. 12b) shows just

small scattered areas where peak probabilities were

low (i.e., mostly below 50%). BSS, TS, and bias scores

computed for this map time (11.1%, 0.15, and 0.4, re-

spectively) are much weaker (20.1%, 0.26, and 1.1,

respectively) than those for long samples in Figs. 2 and

9. This convection underforecast arose from error

within all three (Obs, HRRR, and MOS) predictor

types. In particular, Fig. 13a shows a line of quite weak

MRMS CREF ‘‘initial’’ echoes and it is located to the

east of the convection band in Fig. 12b, Fig. 13b shows

that HRRR underpredicted the CREF intensity and

coverage in this convection band, and Fig. 13c shows

the GFS MOS convection probabilities were very

low (under 15%) in the area. Contrastingly, by the

0500–0600 UTC 7 March valid time corresponding

to 11–12-h forecast projections from the 1800 UTC

LAMP cycle (Fig. 12c), the LAMP convection prob-

abilities and potential increased explosively in a narrow

line from eastern Oklahoma to southernWisconsin, and

this forecast verified very well, as the LAMP BSS, TS,

and bias scores improve to 38.1%, 0.39, and 1.1, re-

spectively. Figures 13d–f suggest the HRRR CREF

(Fig. 13b) was largely responsible for the remarkable

surge in peak convection probabilities to 100% seen in

Fig. 12c, though other HRRR predictors not shown in

Fig. 13 probably contributed also.

In contrast to the 1800 UTC cycle, LAMP 0000 UTC

7 March convection forecast performance for projec-

tions of 6 h and less is much improved (Fig. 14). For this

cycle, a narrow, solid line of 100% convection proba-

bility was present for 0–1-h forecast projections over the

northern plains, which the corresponding verification

FIG. 14. As in Fig. 12, but for (a) 0–1- and (b) 5–6-h forecast projections from 0000 UTC 7 Mar 2017.
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map shows to be a very good forecast (Fig. 14a), and yet

the BSS and TS scores (73.3% and 0.60) are not greatly

higher than for the long samples in Figs. 2 and 9 (52.7%

and 0.54). Similarly, for 5–6-h forecast projections es-

sentially all observed convection was correctly fore-

cast (Fig. 14b), though there is notable overforecasting

(bias 5 1.4). These examples of outstanding short-

range convection forecasts stem from an ideal scenario

for the 0000 UTC LAMP model run: 1) an extensive

line of strong convection at the 0000 UTC cycle time

was already present, and this line persisted as it moved

downstream over the subsequent 6-h period spanned

in Fig. 14, and 2) the 2300 UTC 6 March HRRR run

also correctly predicted this line. (Diagnostic predictor

maps are not shown.) Thus, the extrapolated observa-

tional predictors and HRRR predictors in the LAMP

model synergistically complemented each other to pro-

duce strong LAMP convection probability and potential

performance.

As for TL forecast performance for the 6–7 March

2017 case, findings reveal general mirroring of con-

vection performance. For example, LAMP TL perfor-

mance spanning 6h after 0000 UTC 7March is shown in

Fig. 15. Note that LAMP performance is especially

strong for the 0–1-h period where the BSS (TS) is 73.3%

(0.73), which is much higher than for the long sample

average [59.4% (0.57)]. For the corresponding 5–6-h

forecast (Fig. 15b), the TL BSS (TS) falls to 32.1%

(0.30), which is still well above the long sample average

[13.6% (0.18)].

Figure 16 shows maps for four key TL predictors

for the 5–6-h forecast projection in Fig. 15b. Note that

the HRRR lightning threat index (Fig. 16b) and the

NAM MOS TL probability (Fig. 16c) match well the

5–6-h forecast in Fig. 15b, whereas the advected

30-min lightning count has little impact. Note also that

the narrow strip of misses along the rear side of the

convection band fromMissouri to Illinois in Fig. 15b is

linked to slight phase error in the HRRR lightning

threat index (Fig. 16b), and false alarms from eastern

Oklahoma to southern Missouri in Fig. 15b coincide

with a mispositioned GFS TL probability maximum

there (Fig. 16d).

7. Summary, findings, and future plans

Extensive upgrades have recently been made to

previously operational LAMP 2-h convection and CG

lightning probability and potential guidance forecasts

for the CONUS. Spatial and temporal resolutions of

the predictands were enhanced through reductions of

the grid mesh from 20 to 10 km and predictand valid

FIG. 15. As in Fig. 14, but for total lightning (TL). Abreviation: ltg. 5 lightning.
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period from two hours to one hour, which were en-

abled through first-time LAMP application of fine-

scale MRMS reflectivity products and HRRR model

output. In addition, the replacement of CG lightning

data in the old LAMP model with TL data provides

more comprehensive definitions of the convection

and lightning predictands as well as better lightning

predictors (section 2).

Objective scoring of the upgraded convection and

TL probabilities discussed in section 4 shows that prob-

ability skill and sharpness are quite high in the hour

immediately following model cycle time, after which

skill falls rapidly out to four hours and then levels off

through 17 h. Skill sensitivity tests also discussed in

this section reveal that the high skill and sharpness

for the shortest few forecast projections is attributed

mostly to extrapolation of finescale MRMS and TL

observations, and the prevention of a skill fall-off in

the 4–17-h range largely reflects the benefit of fine-

scale HRRR model predictors. In the 17–25-h range,

large-scale MOS predictors are the sole predictive

source, which accounts for relatively low skill there.

Section 5 describes how convection (and TL) poten-

tial is derived from, and aids use of, corresponding

FIG. 16. Key TL predictors pertaining to Fig. 15b. Abbreviations: adv. 5 advected; prob. 5 probability; ltg. 5
lightning.

TABLE 7. LAMP convection and TL preimplementation user feedback summary, where the left column involved only the NCEP

Aviation Weather Center (AWC), and the right column is based on 11 responses to a questionnaire from various user groups inside and

outside the NWS.

AWC evaluation Responses to questionnaire

‘‘AWC and national aviation forecasters at the Federal

Aviation Administration Command Center use the new

LAMP convective probability forecasts as an additional

guidance source for the collaborative Traffic Flow

Management Convective Forecast graphic’’

Question: ‘‘Is the new LAMP 1-h convection and lightning guidance

an improvement over the current LAMP 2-h convection and

lightning guidance?’’

‘‘1-h LAMP convection probability is much better than the

older 2-h convective probability, adds sharpness and

gives needed hourly lead-time information’’

Responses:

Yes 5 92.3%

Do not know 5 7.7%
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probabilities with widely varying skill and sharpness

as a function of LAMP forecast projection, season,

and geographical region.

Section 6 addresses LAMP forecast performance

through examination of forecast-verification maps for

a selected case of explosive convection development

over the central United States. Example maps show

the upgraded convection and TL probabilities have

much better spatial focus and probability sharpness

than those from the old, coarser-resolution LAMP

model. Also, for forecast projections of 6 h and less these

maps show LAMP performance was better where con-

vection was already ongoing at LAMPmodel cycle time

than for an earlier cycle where convection had not yet

developed, which reflects the strong predictive role

of extrapolated MRMS and TL observational pre-

dictors. Further, the example forecast maps showed

outstanding LAMP forecast performance for scenarios

where these observational predictors and HRRR-

forecast predictors synergistically complement one

another.

The upgraded LAMP convection and total light-

ning forecast guidance products were operationally

implemented in January 2018 following real time

experimental testing that commenced in August 2016.

Feedback from users of the guidance has been posi-

tive (see Table 7). Work is presently underway to

develop LAMP convection and lightning products

for Alaska similar to these for the CONUS. MDL

also has near-term plans to upgrade the CONUS

guidance by incorporating more current historical TL,

MRMS, and HRRR data (discussed in section 2),

expanding the geographical coverage into southern

Canada, the Gulf of Mexico, and Caribbean Sea

areas, and extending the forecast range to 38 h. In

the longer term, we expect newGOES 16/17 TL data

will also be incorporated into LAMP (also discussed

in section 2).
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APPENDIX

Predictor Postprocessing

a. Truncation

Lower and/or upper bound truncation is applied to

Obs and HRRR variables in Table 2, as these variables

can have outlier values [see footnote 2 in section 2d(1)].

Outliers are extremely low or high values, which may be

due to observation, data transmission, or prediction er-

ror. Truncation bounds for a given potential predictor

variable were determined heuristically by examining its

CONUS-wideminimum,maximum,mean, and standard

deviation over the full developmental sample and also

inspecting maps for cases containing extreme values.

Ultimately, the assignment of truncation bounds for

each variable was a matter of human judgment. Where

an outlier value is found, it is changed to the appro-

priate truncation value.

b. Binary variables

New binary predictor variables were created for

each of the Obs and HRRR predictors in Table 2. A

binary predictor variable takes on a 1 valuewhen the base

continuous predictor variable equals or exceeds a pre-

determined threshold value and 0 otherwise. Three to

four threshold values are generally specified for each

variable, meaning that 3–4 additional candidate pre-

dictors are created for each continuous variable. The

determination of threshold values is a trial-and error

process involving test regression runs and examining

the resulting predictor means, standard deviations, cor-

relation coefficients, and reductions of predictand vari-

ance. The goal is to determine predictor thresholds that

maximize the reduction of predictand variance without

overfitting the developmental sample (Wilks 2006).

c. Smoothing

Conventional grid smoothing is applied to the Obs

and HRRR potential predictors to enhance their pre-

dictive effectiveness, as experience at MDL shows that

grid smoothing generally results in improved forecast

performance scores. Further, smoothing of grid binary

predictor fields results in smooth transitions across 0–1

interfaces, which results in improved spatial coherency

in ensuing forecasts. In this study the grid smoothing

operator is a nine-point weighted average, where the

weights (in one grid direction) are usually 0.50 at the

central grid point and 0.25 at each adjacent point.

The smoothing amount is customized for each Obs

and HRRR variable, largely by choosing the number

smoothing passes required to remove finescale detail

judged to be noise or not predictable. The number of
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passes ranged from one to three, though the smoothing

was weakened on the final pass for some variables

through weights adjustment.

In the case of the convection and TL predictand

monthly relative frequencies (MRFs; Table 2), special

smoothing was necessary to obtain fields with coher-

ency across adjacent 1-h valid periods, adjacent months,

as well as spatially across the CONUS. Thus, three se-

quential smoothing operations were applied, first across

adjacent hours, then across adjacentmonths, and last the

grid smoothing discussed above. Note that hour-to-hour

(month-to-month) smoothing is applied across three hours

(months) for a given pass. Also, the typical ‘‘1–2–1’’

smoothing weights (noted above) are weakened, es-

pecially for the hour-to-hour smoothing to enhance

retention of diurnal variability, and the smoothing

was similarly limited in the month-to-month smooth-

ing though two passes were needed for the very choppy

convection MRFs [see section 2d(1)]. Finally, for the

conventional grid smoothing, five passes were needed

to obtain desired spatial coherency for convection, while

only three passes were needed for TL.
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